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1. STATEMENT OF THE PROBLEM

The satisfactory performance of an autopilot-controlled flexible launch vehicle

is crucially dependent on an accurate representation of the vehicle's elastic motion

under prescribed forces. This is due to the fact that the forces and moments applied

by the propulsion device (rocket engines) are governed both in magnitude and direction

by the information derived from sensors located along the vehicle. The output from

these sensors is composed of signals representing both rigid body motions and local

elastic distortions. It is not difficult to visualize intuitively that, under certain ad-

verse conditions, the autopilot will act to reinforce the amplitudes of oscillation --

leading ultimately to structural failure of the vehicle.

A prerequisite for control system synthesis is therefore an adequate repre-

sentation of the vehicle's elastic motion under prescribed external forces. It turns

out that this representation can be conveniently expressed in terms of the vibration

frequencies and mode shapes of the "free-free" structure.

Several types of vibration must be distinguished, viz., longitudinal, torsional,

and lateral. Longitudinal oscillations, as the name implies, concern the elastic dis-

placements parallel to the longitudinal axis. These displacements are induced by axial

loads on the vehicle during flight. The main effect is a slight decrease in lateral bend-

ing mode frequency due to the axial load on the beam. This effect is generally very

small and can be ignored in nearly all cases. Longitudinal oscillations are significant

primarily in the tank pressurization control systems.

Torsional vibrations, due to elastic angular displacements around the longi-

tudinal axis, may be studied by treating the vehicle as a system of lumped inertias

connected by rotation springs. The analytical development, for purposes of mode and

frequency computation, is quite analogous to that for lateral vibrations with the excep-

tion that shear stiffness replaces bending stiffness. This question is treated in detail

in Ref. 16. Torsional oscillations are normally of little concern for conventional launch
/

vehicles since these modes are uncoupled from the lateral and longitudinal motion, be-

cause of symmetry and because there is no major excitation of the modes during flight.

Of primary importance, for purposes of control system stability analysis,

are the lateral vibration modes, since this motion is sensed by the autopilot instru-

mentation. The computation and interpretation of the lateral vibration properties of a

launch vehicle are the primary aim of this monograph.

For conventional vehicles having a high degree of axial symmetry there is

negligible coupling between the pitch and yaw lateral modes, as well as between lateral

and longitudinal or torsional modes. Thus an analysis of the planar elastic properties

of the vehicle is usually sufficient for purposes of control system analysis.



Analytical and control system aspects are stressed in the present monograph.

Numerical methods are treated in detail in Ref. 15.

The picture changes considerably for the case of clustered boosters where

coupling between lateral and torsional modes becomes significant.

The problems here are mainly computational rather than conceptual, since

the large number of lumped mass stations required for an adequate mathematical re-

presentation strains the capabilities of even the largest computers. Furthermore,

good basic data, especially for junction points, is hard to come by.

The present monograph, which treats the question of elastic motion in detail,

is a supplement and extension of "Short Period Dynamics" (Ref. 22). Taken together,

these documents provide a complete mathematical model of the launch vehicle attitude

control system.

i
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2. STATE OF THE ART

The importance of the dynamic (rather than static) effects of structural

elasticity have long been recognized by aircraft designers. With airplanes, the pro-

blem arises because of interaction between the elastic and aerodynamic forces. It

manifests itself primarily in the phenomenon of flutter. Additional problems, stem-

ming from essentially the same source, are buffeting, divergence, loss of control

effectiveness, etc.

The emergence of the space launch vehicle added a new dimension to the

problem: that of interaction of elastic deformation with the control system. A launch

vehicle is essentially a long slender beam. If devices are placed along the vehicle to

sense angular displacement or rate (for purposes of feedback control), the devices

will, in general, measure local elastic distortions as well as rigid body motion. With

unfavorable phase relationships, the control device (rocket engine) will act to rein-

force elastic oscillations, leading ultimately to structural failure of the vehicle.

For launch vehicles, because of their beam-like shape and the manner in

which sensing instrumentation is located, the primary elastic phenomenon of interest

is the lateral vibration. By obtaining the expressions for bending displacement and

superimposing these as added degrees of freedom in the vehicle control system, the

essential stability and performance aspects may be rationally analyzed.

In one of the earliest studies of the problem as related to the development of

the Arias autopilot, Beharrel and Friedrich(13) showed how the added elastic degrees

of freedom could be expressed in the transfer function format, thereby enabling con-

ventional analytical techniques to be applied. The elastic deflection under applied

forces was expressed in terms of the natural frequencies and modes of vibration of

the free system.

With the basic analytical format of the problem clearly defined, attention was

next focused on remedial measures and the calculation of good bending mode data.

The first of these is a problem of control system design and is treated in

other monographs in this series( 23, 32). The second problem is crucial in that errors

in bending mode data may degrade control system performance (sometimes

catastrophically}.

Conceptually, the determination of natural frequencies and modes is simple

even for nonhomogeneous structures. The main problem lies in formulating an adequate

lumped-mass model which on the one hand is sufficiently detailed to exhibit all pheno-

mena of interest, and yet is not so complex as to overwhelm the capabilities of avail-

able computers. Typical numerical schemes employing classical methods such as

3



Myklestad, or Rayleigh-Ritz have been presented in Refs. 5, 14, 15, and 17.
Theoretical motivations are discussed in standard texts(1 - 4).

For a launch vehicle exhibiting a high degree of geometric symmetry, the

above methods are adequate, Various complicating factors are nevertheless present,

the predominant of which are attached masses whose junction points have stiffness

properties which are difficult to ascertain experimentally. These include engine and

turbopump mounts, instrumentation packages, payload interfaces, etc. A detailed

account of this problem is contained in Ref. 17. The result is that bending mode data

seldom exhibits an accuracy better then 5 to 10% for the first mode, with progressively

poorer accuracies for the higher modes.

The situation degrades measurably for the case of clustered boosters. Here,

coupling between lateral and torsional vibration modes becomes significant, and a good

lumped-mass model becomes more difficult to formulate. The determination of modes

and frequencies for this case has been studied by Lianis and Fontenot(8), Milner (6),

and Storey(7), among others. A useful technique has been developed by Hurty(9) for

analyzing complex structures. This method involves the decomposition of the struc-

ture into components, each of which is analyzed individually. The properties of the

entire structure are then obtained by assembling the component modes after taking

due account of the restraints at the junction points. The basic method may be applied

to any type of composite structure, i.e., tank and swivelled engine, clustered boosters,

etc.

It should be noted that the assumptions which characterize present analytical

techniques may not be valid for certain advanced configurations. Among these are

finite elastic deformations {nonlinear), and the interaction of sloshing motion with

elastic tanks.



3. RECOMMENDEDPROCEDURES

The so-called modal method has been found to be most appropriate in ex-

pressing the oscillatory motion of an elastic body in which the driving forces are

contained within a closed-loop automatic control system. In this approach, the

elastic deflections are expressed in terms of the free modes of vibration of the sys-

tem. The conceptual framework for this scheme is presented in Subsection 3.1, in

which the general equations of motion for an unrestrained elastic body are derived

from first principles. This is followed by a specialization to the case of an elastic

beam in which the particular features which characterize a flexible launch vehicle

are discussed.

Combining these results with the equations representing the control system,

one may then formulate a complete mathematical model of an autopilot-controlled

flexible launch vehicle.

Some general features of the resulting system are discussed in Subsection

3.6, and this is followed by a consideration of various special problems associated

with the analysis of launch vehicles.

3.1 GENERAL EQUATIONS OF MOTION FOR AN UNRESTRAINED ELASTIC BODY

The relevant geometry for the problem is shown in Fig. 1. A body coordinate

system, represented by the right-hand unit vector triad ([b' Jb' kb) with its origin at

the mass center of the body is assumed fixed to the body. The radius vector from O

to a generic mass particle within the body is deonted by 5. A radius vector from an
u

inertial reference frame (i I, JI, kI) to this same mass particle, is denoted by rc"

Via the laws for rate of change of linear and angular momentum, we have

d---_ pdV = F dS

V S

(i)

r x-_-pdV = x l_dS

V S

(2)

where

=5 +5
C O

(3)



r
c

JI

r
0

7"
1

I
Figure 1. Coordinate Systems for Unrestrained Elastic Body

The integrals on the left-hand side of Eqs. (1) and (2) are taken over the

entire volume, V, while those on the right-hand side are taken over the surface, S.

The quantities 1_ and p denote force and mass density respectively.

For a completely rigid body the magnitude of the vector, _, is constant.

However, in general, there will be relative motion between a mass particle within

the body and the body-fixed reference frame. In a launch vehicle, for example, such

relative motion may arise from various sources such as:

a. Vehicle flexibility,

b. Propellant sloshing.

c. Engine deflection.

etc.

In the development which follows, we take the viewpoint adopted in Ref. 22; namely,

the motion of the "main" body {exclusive of sloshing and engine deflection) is derived,

after which the coupling terms due to sloshing and engine deflection are introduced as

inertial forces (in the sense of D'Alembert) and appropriate kinematic constraints.

This approach has the virtue of retaining a physical grasp of the problem, which might

otherwise be obscured. It should be emphasized, however, that by suitably interpre-

ting r and including the necessary kinematic constraints, Equations (1) and (2) provide

a complete description of the motion.

6



For present purposes we write

= (4)

Here, rR denotes the radius vector from the origin of the body-fixedcoordi-

hate system to the undistorted position of the mass particle, and the vector, _, denotes

the elastic displacement. The coupling terms due to attached bodies having relative

motion with respect to the main body will be added in the manner described in Ref. 22.

The elastic motions must satisfy a generalized form of Hooke's law which is

written as follows:

2

Here, _ and £ are linear differential operators which involve the spacial vari-

ables only. Table 1 lists the form of N and £ for a number of common systems.

In many important special cases, _ does not involve partial derivatives and

is merely a function of the space variables. Thus it is not an operator but merely a

function. All of the cases shown in Table 1 are of this type.

In the analysis which follows, crucial simplifications are effected with this

assumption and we will therefore adopt it.

The derivation of the equations of motion will proceed, first, by obtaining the

solution for free vibration. Then, using the normal modes of vibration, the forced

motion will be expressed in terms of these modes.

3.1.1 Free Vibrations in a Vacuum

In the absence of external forces, the system remains inert and we have

d P d_ R
i_ _ o _ - 0

dt dt

Consequently, Eqs. (1), (2), and (5)become

(6)



Table 1. Linear Differential Operators for Some Common Elastic Systems

SYSTEM DEFLECTION _ £

String lateral p A(x)

Bar longitudinal p A(x)

Bar torsional p J(x)

Bar lateral p A(x)

5 2
T_

2
_x

5 x 2 I

Membrane lateral p h (x,y) - S V 2

lateral p h (x,y)

density

cross-sectional area

centroidal moment of inertia of A

polar moment of inertia of A

plate thickness

tensile force

tension per unit length

Young's modulus

shear modulus

torsional constant for A (=J for circular sections)

S h3/12 (1 - v 2)

PoissonVs ratio

Plate

p

A=

I =

J =

h =

T =

S =

E =

G =

K =

D=

v =

V 2 (D V2)



y-

d2_ p dV = 0 (7)d t 2

f d2g(_R +_) _ pdV = 0 (8)

V

= o (9)
t2

We now assume that _ may be expressed as the product of a space function

and time function as follows

= ¢ (x,y,z) T(t) (10)

where ¢ = Cx ]'b + *y ]'b + Cz kb is an eigenfunction in vector form which represents the
natural mode shape. After substituting this in Eqs. (7) - (9), we obtain

8 p d V = 0 (ll)

/_R _ = 0 (12)P d V

V

and

/2 _ ¢ +T£ (¢) = 0 (13)

This last equation implies that

• . _2T + T = 0 (14)

£ (_)-u) 2D¢ = 0 (15)

where ¢02 is a constant which represents physically the square of the frequency of the

natural vibration modes.

A fundamental property of the eigenfunction vector, ¢, is that of orthogonality.

It is this property which permits one to express the forced motion in terms of these

natural modes.

We may derive the orthogonality condition as follows.

9



If _i and _j are two distinct modes, then from Eq. (15)

£ (_i) -. [u_(i)12 _ i

_(_j)-_ [_0(J)] 2 _j

Taking the dot product of the first of these by _j and the second by _i, inte-
grating over the whole volume, and then subtracting the first from the second yields

- _(J) gi.gj dV - j • ,i_ (_i) -_i " tl_j) dV = 0 116)
V

In cases where the boundary conditions are such that the second integral

vanishes, we have

_ _i " _j dV = 0
(17)

This is the orthogonality condition for the free modes of vibration.

for all cases where it can be shown that

It holds

(18)

To examine the implications of this condition, we consider a few simple cases.

For the lateral vibrations of a bar, _ is merely a scalar and (see Table 1)

£ (¢) - x2 I

d x 2 d x2/

= (E I _')" (19)

where the primes denote differentiation with respect to x.

10



Via a repeated integration by parts we have

j £ (¢i) dx = j (EI_i - d x
O O

- ' (El 'dx
= (E I j

JO 0

= Cj (EI_i")' - '(EI_i" ) + EI¢i"dx
0

Similarly

L [ ¢J )_i £ (¢J) dx = _bi (EI " '
o

+ EI_bj dx
o

Consequently

o

£ (¢i) - _i "£ (_bj)] dx

[ 1! I

= Cj (El¢i")'-_i (EICj")'-¢j EI¢i" +¢i EICj"jo
(20)

Typical boundary conditions are

Built-in ends: _ = 0, ¢' = 0

Pinned ends: _ = 0, EI$" =0

Free ends: EI_" = 0, (EI¢")' =0

For any one of these, each of the four terms on the right-hand side of Eq. (20)

vanishes. Therefore, in this case the orthogonality property (17) is assured.

A somewhat more difficult situation prevails in the case of a thin plate where

(see Table 1)

= v 2 (Dr 2) (21)

11



and the del operator is two-dimensional.

From a standard formula in vector analysis, we have (¢ is again a scalar)

Cj _2 (D_2_i) = _. [¢j _7(I)_2¢i)]- _¢j ._(D_2¢i ) (22)

and

v Cj

Therefore

• V(DV 2¢i) = V • [DV 2¢i (V_j)]-DV 2¢i V2¢j (23)

[ V 2 V 2 - _72 dCj (D _i) Cj (D V 2 S¢i ) ]

= /W-[¢j_7(I) V2_i )-
S

+DV 2¢j (V¢i)]dS

D V 2 @i (VCj) - ¢iW(D V 2 Cj)

_2
= _j _-_(D _i) - D V2 ¢i _ n

5

-- -Cirri (D_72¢j)

+ DW2 Cj -_-n dL (24)

5

where the _--_ denote the directional derivative along the normal in the usual terminology
of vector analysis.

If the boundary conditions for the plate are such that the integral (24) vanishes,

the orthogonality condition (17) holds. It is not difficult to show that for many simple

plate boundary conditions, (24) does indeed vanish.

The solution to the problem of free vibrations is embodied in Eqs. (11), (12),

and (15) together with appropriate boundary and initial conditions.

Note that for a free body which has three translational and three rotational

degrees of freedom, there will be six modes of zero frequency as follows:

12



_I = all b

¢2 = a2Jb

¢4 : -zJb+Ykb

:

(25)

In addition, there are an infinite number of modes of finite frequency corres-

ponding to the elastic degrees of freedom.

3.1.2 Forced Vibrations in Terms of Natural Modes

We assume that the displacement _ may be expressed as

(30

= Z _i q(i) (26)
i=l

Here ¢i is the mode shape (which is a function of spacial variables only),

and the q(i) are (as yet undetermined) functions of time only

Expanding Eq. (1) and making use of (26), we find?

[ d t2 5 t rR) fR) i=1 p d V

where is the angular velocity of the body reference frame.

(27)

with the

Since, by assumption, the origin of the body coordinate system coincides

mass center, we have

_RPdV = 0
V

(28)

5t ( ) -- time derivative with respect to body coordinate system.

13



Using this and the mode property (Ii), F_xl.(27) reduces to

d2 /m --- = l_dS

d t2
(29)

where

m = _ dV (30)

V

Similarly, after expanding Eq. (2), substituting (26) and making use of the

mode properties (11) and (12), we obtain

_t / _Rx (_x rR) pdV = /_x FdS (31)
S

Here ithas also been assumed thatc_ and q(i)are small, permitting one to

discard higher order terms in these quantities.

In terms of the inertia dyadic

I =I %+ ....
zz xy XZ

u

- 2 Iy z Jb kb (32)

where

f
](y2 +z 2) pdVI

XX

Ixy yp dV

etc.

We may express Eq. (31) in the form

Tt (I- _) = /:x FdS (33)

Eqs. (29) and (33) describe the six rigid body degrees of freedom for the

body. These equations are identical to those derived in Ref. 22, although the latter

are somewhat more general since the mass center is not coincident with the origin of

the body reference frame.

14



Turning now to the equations which describe the elastic displacement, we find

after substituting (26) in Eq. (5)

i il lqil
Via Eq. (15), this simplifies to

U _ (_(i)+ [¢o(i)]2 q(i))_i = 1_

i=1

Taking the dot product of both sides of this equation by Cj, integrating over the
whole volume, and making use of the orthogonality property (17), we obtain

"c_(J)+ IcY(J)] 2 q(J) = 'Q (j) (34)
_(J)

j = 1,2,3,...

where

ffl.(j) = .f_¢j • _jdV (35)
V

is the generalized mass

q(J) = /1 _ "¢j
s

(sometimes called "modal mass") and

d S (36)

is the generalized force.

Equations (29), (33), and (34) provide a complete description of the motion

for an unrestrained elastic body. These equations are specialized to the case of an

elastic beam in Subsection 3.2, and, for the particular case of a launch vehicle, in

Subsection 3.3.

3.1.3 Energy Methods

In certain instances it is more convenient to deal with the energy expressions

which characterize the force and displacement properties of an elastic system rather

than the equations of motion directly. It follows from elementary considerations that

the kinetic energy is given by

15



1 f drc drc

Tz -_- _-JV" d--V
dV (37)

and the potential energy

1[UE = _" _.£(_)dV (38)

After expansion of terms in Eq. (37), and making use of Eqs. (11), (12), (17),

(26), and (28) together with the definition of the inertia dyadic (32), the kinetic energy

expression reduces to

o o +--W • (I- _)) + (39)TE 2 m d--Y-" d---F 2
i=1

Furthermore, after substituting (26) in (38) and making use of (17), the

potential energy takes the form

q (1)2 (40)- 1 _ _(i) [oJi)]2 "
UE 2 i= 1

Viewing 5 o, _0, and q(i) as the generalized coordinates (degrees of freedom)

of the problem, we may write the expression for virtual work as

6W = S_ff'[5 ro+_iSq(i)]dSi=l

t

d S (41)

where 5 ( ) is the variation operator.

R is now readily found that the above expressions, when substituted in

Lagrange s equation,

(42)

16



w

where F i is the generalized force corresponding to the generalized coordinate u i, yields

the equations (29), (33), and (34) obtained previously.

3.2 BEAM EQUATIONS

Depending on the form of the _ and £ operators, the normal modes derived in

the previous section may represent torsional, lateral or longitudinal deflections, or

some combination thereof. In this monograph, we shall deal exclusively with the

lateral vibrations of a beam, since this effect is predominant as far as interaction

with the control system is concerned.

For purposes of deriving the lateral deflections of a beam due to bending and

shear strains, we consider the free body diagram of a beam element shown in Fig. 2.

The following nomenclature is employed.

B = mass moment of inertia (rotary inertia) per unit length

£ = length

m = mass per unit length

M = bending moment

I" = shear

= angular displacement due to bending

= beam deflection

F z = force per unit length

E I = bending stiffness

KG = shearing stiffness

Summing the vertical forces on the beam element we obtain

_2 _r
m + - F

t 2 5£ z5
(43)

Similarly, by summing moments, we find

r+B
52E bM

5 t2 5£
- 0 (44)

From elementary beam theory we have

17



F (L,t)
z

r

e_ _ X M+_MdL

Figure 2. Free Body Diagram of Beam Segment

18



5(
M = E I 5-Y (45)

r = KG (_-5_5..__) (46)

In principle, when the initial and boundary conditions are specified, the set of

equations (43) - (46) can be solved for _. However, for nonuniform beams, where E I

and KG are functions of £, closed-form solutions are not available. Even in the case

of free vibrations for uniform beams, the equations are quite complicated. For

example, with F z = 0 and B, E, I, K, and G constant, Equations (43) - (46) may be

combined to give the form

m * 1-
(EIm+ 52 Bm 5__2 52_ +EI---

- \KG _ K-G 5 5t 2 5£ 4
- 0 (47)

For a slender beam, KG -_ _ and B -' 0. In this case, the above equation

reduces to

52_ 54_
m -- + EI - 0 (48)

5 t 2 5£ 4

For a nonhomogeneous beam, Eq. (48) takes the form

52 _ _2 [ 52 _ ]

m (£) 7-t 2 +5"--_ [E (£) I (_)_£2j
= 0 (49)

Comparing this expression with Eq. (5), we see that in this case

U = m(£)

5 £2 (_) I (£)

The elastic displacement for most types of flexible launch vehicles is described

with sufficient accuracy by Eq. (49), which represents the case of free vibrations. The

corresponding modes and frequencies are used to express the motion when external

forces are applied. In the general case, when the beam is not uniform, various

numerical methods must be used to obtain these modes and frequencies.
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Itis instructive, however, to examine the simplest case, wherein the beam

is uniform. The results of this elementary analysis are helpful in providing a physical

grasp and a qualitativeindication of the situationwhich prevails in the more general

case. This is done in the following section.

3.2.1 Free Vibrations of Uniform Beam

The motion in this case is described by Eq. (48). Assuming that there is a
solution of the form

(L, t) = ¢ (L) T(t) (50)

we obtain, after substituting back in (48)t,

1 d 2 T EI d4¢
w

T dt 2 m ¢ bL4
(51)

This equation is valid only if the functions on either side of the equal sign are

each equal to some constant, _2 Thus (51) is equivalent to the two equations

d2 T 2
_+c_ T -- 0
d t2

(52)

d4
ZI ----_ -mo_2¢ = 0

dL 4
(53)

Physically, ¢ represents the shape of a natural vibration mode and o_ is the

vibration frequency corresponding to this mode. There are an infinitenumber of

values of 00which satisfy (52)and (53), and to each one there corresponds a parti-

cular ¢.

Using the methods of Subsection 3.1.1, it is easy to show that
L

/m¢i¢ j d._ = 0 (54)

where ¢i and Cj are two distinct vibration modes. This is a special case of the more
general orthogonality condition (17).

t The analysis which follows is a scalar equivalent of the vector case considered in

Subsection 3.1.1. The presentation parallels that of Bisplinghoff, Ref. 4.
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a_

b.

The present aim is two-fold:

Determine the o_ and _ values.

Express the motion in terms of _ and ¢.

where

To do this, we begin by writing the solution to Eqs. (52) and (53), viz.

T = C 1 sin _t + C 2 cos cvt (55)

1/2 _ + C4 c°sh (__)1/2¢ = C3sinh a/(o_ ,¢

+ C 5 sin _ + C 6 cos _ (56)

2 EI
a -

m

The constants C 1 through C 6 and c_ are obtained from the initial and boundary
conditions. We are primarily interested in the free-free case where the shear and

bending moment at the ends of the beam are zero; i.e.

¢" (o) = 0 (57a)

¢"(o) = 0 (57b)

_0 (L) = 0 (57c)

¢"(L) = 0 (57d)

substituting (56) into (57a) and (57b), we obtain

C 3 - C 5 = 0

C 4 - C 6 = 0
(58)

obtain

Furthermore, by substituting (56) into (57c) and (57d) and applying (58), we
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(59)

The value of a) which satisfies the relations (59) is obtained by setting the

determinant of the coefficients of C3 and C4 equal to zero. After simplification, this

operation yields

c /, _1/2
(6O)

The roots of this equation are obtained graphically from the intersections of

the curves plotted in Fig. 3. In this case, one of the intersections occurs at a zero

value of the argument, indicating that one of the natural frequencies is zero. This

situation arises as a result of the fact that the beam is unrestrained, and we may say

that this zero frequency corresponds to a gross motion of the unrestrained beam,

which we shall term a rigid body mode of motion.

1

0 ./cosh _ L

Figure 3. Graphical Solution of Transcendental Equation of Uniform

Free-Free Beam

The rigid body mode shape can be obtained by putting _ = 0 into the basic

differential equation, (53), and applying the boundary conditions given by Eqs. (57).

Putting _ = 0 in Eq. (53) gives

d 4
---- 0

4
(61)
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which integrates to

(L) = A1L3+A2L2+A3 L +A 4 (62)

Via the boundary conditions (57)we obtain the rigid mode shape

¢0 (L) = A3L +A 4 (63)

where A 3 and A 4 are arbitrary constants. Thus the rigid body mode shape of an un-
restrained beam can be described by a rigid translation and a rigid rotation.

The elastic mode shapes are obtained by applying (58) and (59) to determine

C3, C 5, and C 6 in terms of C 4, and substituting the result in Eq. (56). This yields

_n - [/c°sTL-c°sh)'L_(sinh £ +sin L)

+ (cosh y _ + cos _ L)]
(64)

where

2 CO(n)
v - (65)

a

Elastic mode shapes el(L), ¢2(L), ..., Cn(L) can be computed from Eq. (64)
by substituting corresponding frequency values u_l), u_(2), • •., co(n) obtained from the

points of intersection in Fig. 3. 2_ae various mode shapes of the unrestrained beam

and the corresponding frequencies are illustrated in Fig. 4.

As is apparent from Eq. (64), the elastic modes define relative displacements,

since they are determined only to within an arbitrary constant. One may normalize

those modes in various ways. The simplest perhaps is the following.

¢. (L)
$(i) (L) = 1 (66)

_b (LT)
1

where £T is a predetermined location on the beam (usually an end). We call the ¢(i) (L)

the normalized mode shapes.

The complete solution for the elastic motion in the case of free vibrations

may now be written as
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Rigid-body mode,

n=0

First mode,

n=l

(o)

(1)

=0

= (1.51)2 (_'2/L2) v/FfT-m

Second mode,_ _'_ !

Figure 4. Mode Shapes of Uniform Free-Free Beam

(L, t) = _ ¢_n {_'} Tn(t)
n=l

(67)

where Cn (_) is given by (64) and

Tn (t) = C1 sinu_'n'i _ t+C 2cos_n'l _ t (68)

The constants C 1 and C2 are determined from the initial conditions.
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3.2.2 Forced Vibrations of Nonuniform Beam

In the previous section, a uniform beam was considered for purposes of

simplicity in order to exhibit the basic forms of the free-free mode shapes. As a

rule, in realistic applications one must deal with nonuniform beams. Here, numeri-

ca] methods of one kind or another must be used to calculate the natural frequencies

and mode shapes. Once these are known, it is a straightforward matter to express

the forced motion in these terms.

Neglecting shear and rotary inertia, the equation for forced vibration of a

nonhomogeneous beam is given by#

m(_) _2 _ + _2 [ _2_]8 t2 8£ 2 E (£) I(_)-_2] _-_.F z (_,t)
(69)

If we now assume that the modes and frequencies for prescribed boundary

conditions have been calculated, the forced displacement may be represented in terms

of the normalized modes as follows.

OO

(£, t) = Z ¢(i) (£) q(i) (t) (70)
i=l

The quantities, q(i) (t), are functions of time, called normal coordinates, that

are to be determined.

By substituting (70) in (69), we obtain

_o _ d2 IE d%(i)_m Z ¢(i) _(i) + __ I q(i) = _ F
i=l i=l d£2 d£2 / z

(7 i)

Multiplying through by ¢(J) and integrating over the length, we have

/L Ld_2 iE d2¢(i)_] ._(i) (i) ¢(j)md_, + _ q(i)f I ¢(J),., o ,_-1-o 2

(72)

eWe now write E F z to emphasize that there are applied forces derived from several

sources.
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From the scalar version of Eq. (15), where in the present case, the linear

operator £ is given by (19) and U = m, it follows that

d? J (73)

Substituting thisexpression in (72)and using the scalar version of the ortho-

gonality property (17), the end result is

_(J) _(J)+_(J)Io_(J)J 2 q(J) = Q(J) (74)

where

(75)

and

L

Q0) =/ZF z_(j) d£ (76)

_(J) and Q(J) are the generalized mass and force respectively for the jth mode.

The final solution is obtained by putting the solution of (74) in Eq. (70).

Remark: If Z F (£, t) does not depend on the motion of the beam, we see that the differ-

ential equations defining the response of the modes are uncoupled and can be

solved separately. We shall see, however, (Subsection 3.3) that in the case

of a launch vehicle, coupling arises between the elastic, slosh, and rigid

body modes since the applied force in each case is dependent on the motion

of all of these modes.

For ease of numerical computation, elastic modes are computed with the

sloshing mass removed and the engine fixed. Slosh modes are computed as-

suming a rigid vehicle. In this sense, the modes are often referred to as

artifically uncoupled. The coupling is reintroduced via the forcing terms and
inertial forces.

In order to take account of structural damping, it is convenient to write Eq.

(74) as
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_i(i) 2_(i) 0_(i) (_(i) [000)] 2 q(i) Q(i)+ + - (77)

_(i)

3.2.3 Orthogonality Properties with Shear and Rotary Inertia Included

In many cases the omission of shear and rotary inertia in the beam equations

of motion leads to significant errors. For this case, the mode orthogonality proper-

ties developed in Subsection 3.1.1 do not apply since now the/_ in Eq. (5) is a linear

operator. The orthogonality property (17) was derived, however, on the assumption

that _ was merely a function.

For purposes of expressing the forced motion, with shear and rotary inertia

included, in terms of natural modes and frequencies, suitable orthogonality properties

must be derived.

We begin by considering the relevant equations for this case, (43) - (46).

After substituting (46) in (43), and putting (45) and (46)in (44), we obtain (with F z = o)

m-- + KG 8_

b t2 "_

( (
KG ¢--_-_- +B 8t 2 8£ EI_- = 0 (79)

The solution is assumed to have the form

(£, t) = ¢ (_) T (t) (80)

E(£,t) = _b (£) T(t) (81)

Substituting this back in (78) and (79), the latter becomes

me d2T +T.5- _ KG - = 0
d t2

(82)

B_b dt 2 +T KG(q) -d-_-) (EI : 0
(83)
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or equivalentlyt

T
(84)

_ "__.T= KG (_-¢')- (EI_')'

T
(85)

This means that

T m ¢ B@

KG (_b -¢') - (EI_b')' 2
_-- _-- (._ (86)

where ¢o2 is an as yet undetermined constant which physically represents the square

of a vibration frequency. From (86) we obtain the following three equations

•" 602T + T = 0 (87)

(89) as

i

mo_ ¢ - [KG (_b-_')] = 0 (88)

KG (_b-¢') - (EI_')'- Bo_2# = 0 (89)

For a specific mode, designated by the subscript "r", we write Eqs. (88) and

m[oo(r)]2_r-[KG(_br-_r')]' = 0

KG (q_r-_r') - (EI_r')' - B [w(r)]2

(90)

= 0 (91)
r

Multiplying Eq. (90) by Cn and (91) by_b n, adding the results, and integrating

over the length of the beam, we obtain

:of #[_(r) m Cr ¢n + B _br _n) d£ = - n [KG (¢r' - _br)]' d_

L L

- n (EI_b r)' dL- G (_n_r -_br_bn) d_ (92)
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Since the subscripts r and n are arbitrary, Eq. (92) is valid if the subscripts

are reversed, i.e.

[°_(n)] 2 / n_'or On + B_r _n ) d_ =

0

L

-o_" r EKG (¢n' -_n )]' d_

L L

oS oF '- r (ZI_bn')'dL - KG (_br¢ n -_r_bn) d_ (93)

Applying an integration by parts to the first and second terms on the right-

hand side of Eqs. (92) and (93) and then subtracting the resulting equations _ (93) from

(92)7, we obtain

_o(r) - o_(n) m Cn Cr + B _n Cr ) dL

I= - Cn K G (¢r' - _br) + ¢r K G (¢n' - _bn)
0

-_nEI_r ÷_r EI_n'
o 0

(94)

For free-free boundary conditions, the shear and slope at the ends of the

beam are zero, viz. ¢

]
M(o) = EI_'[ = 0

Jg=0

i'(o) = KG (_ -¢') = 0

M(L) = EI_'i = 0
J£=L

r(L) = KG (4 - ¢')}_=L =
0 (95)

¢See Eqs. (45) and (46).

29



Consequently, Eq. (94) reduces to

_m_n_r +B_n_r) d£ = 0

n/r

96)

This is the orthogonality condition for the modes of vibration when shear and

rotary inertia are included.

Assuming now that the frequencies, _(i), and the corresponding modes, _i

and _i' have been calculated, we express the forced motion as follows

OD

(%,t) = Z _iq(i)
i=1

(97)

CO

((£,t) = Z _biq(i)
i=1

(98)

The motion in the case of forced vibration is given by

.m

m_ +[KG(c-_')]' = F
Z

which is merely (78) with the forcing term included.

Substituting (97) and (98) in (99) yields

(99)

OD OD

m Z _(i) _i + Z q(i) [KG (_bi - @i')]' = F z
i=l i;1

Using (88), this reduces to

m _ _(i)+_ q(i) m[_v(i)] 2¢i = F z
i=1 i=1

(1oo)

Also, after substituting (97) and (98) in Eq. (79), we find

co o_

B E _(i) q_i + Z q(i)[ KG (_bi
i=1 i=1

- _i') - (E I_bi') '] =

3O



By virtue of (89), this expression simplifies to

B _i (i)_bi+B _q(i)Io_(i)12bi = 0

i=1 i=1

Now, multiplying Eq. (100) by _j and Eq. (101) by,j, adding the resulting
equations, and integrating over the whole beam, we obtain

where

+ B _bi_bj)_(i) d$ +

+ B _ _bj)q(i)d_ =

(m010,

Making use of the orthogonality property (96)this equation reduces to

(J)_(J)+m(_)[_(J)l__(J)--Q0)

(101)

(102)

L

O

is the generalized mass, and

Q0) = _z _j d$ (104)

is the generalized force.

From (102) we see that the form of the equation for the generalized coordi-

nate, q(i),is the same as that with shear and rotary inertia neglected. However, the

generalized mass includes a term due to the rotary inertia, B, and a mode, _bj,due
to shear deflection.

3.2.4 Numerical Methods

For any but the simplest cases, the free modes of vibration must be deter-

mined by some appropriate iterativeprocedure which involves replacing the continuous

system by a lumped-mass model.

31



The classical methods for doing this, due to Holzer, Myklestad, and Rayleigh,

are discussed in standard texts (1'4) as well as in companion monographs in the Design

Criteria series (15, 17). A recent technique, which is based on the theory of dynamic

programming, is described in Ref. 10.

Alley and Guillotte (14) have developed a method for calculating the modal data

when shear and rotary inertia are included.

Clustered booster type launch vehicles (e. g. Saturn, Titan II1) represent

more complex structures requiring extensions of the classical methods for determi-

nation of modal data. Computational methods for this case are contained in the

studies by Storey (7), Kiefling(24), and Milner (6).

Since a detailed treatment of numerical procedures is beyond the scope of

the present monograph, the reader is advised to consult the aforementioned refer-

ences for specific methods.

3.3 LATERAL VIBRATIONS OF A LAUNCH VEHICLE

In an autopilot-controlled launch vehicle, the vehicle's angular displacement

and rate are obtained from gyros located along the vehicle. These devices measure

both the rigid body motion and local elastic distortion at the gyro location.

Considered as a beam, the elastic displacement of the launch vehicle is given

by Eq. (70), viz.

OD

(4, t) = _=_ ¢(i) (4) q(i) (t)
(105)

Only pitch plane motion is considered. The symmetry of most launch vehicles

permits one to discard coupling between pitch, yaw, and roll modes, so that each may

be analyzed separately. The relevant geometry is shown in Fig. 5, which corresponds

to the coordinate system and sign convention of Ref. 22.

We have

5_ (_,t)

_1 a(i) (4)q(i) (t)
(106)

where

(i) 5¢ (i) (_)
a (£)- 5£

is called the normalized mode slope of the ith bending mode.
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Figure 5. Elastic Vehicle in the Pitch Plane

The quantities of interest for purposes of control system analysis are the

following:

Rate Gyro Output:

2

KR a_t s [0 + _-_ a(i) (£ G) q(i)]
0RG = (s2+2_RO_RS+Oj2) i

(zo8)

Position Gyro Output:

0PG (rpS + 1) 0 +_i (£G) q(i)
( o9)

This notation corresponds to that defined in Refs. 22 and 23.
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The generalized coordinate, q(i)

_(i)+ 2_(i)¢_(i)dl(i)+ [u_(i)] 2 q(i)

, satisfies the equation

Q(i)
(110)

(111)

L

=/2Z _(i) d_Q(i) Fz (112)

which are merely Eqs. (74) - (76) repeated here for convenience and where a damping

term has been included in (110).

It is assumed that the modal data (a_ (i), _(i), o.(i), andS(i)) has already been

calculated. In order to proceed with the control system analysis, it remains to deter-

mine the generalized forces, Q(i). This will be done for the case of a typical launch

vehicle in the following subsection.

3.3.1 Generalized Forces

We write the total normal force, ZF z, in Eq. (112) in the following form

ZF = F + FzT + F + F + F (113)z zg za zs zE

The terms on the right-hand side of this equation denote forces due to gravity,

thrust, aerodynamics, propellant sloshing, and rocket engine inertia, respectively.

The magnitudes of these forces are derived in Ref. 22 and are repeated below_"

Gravity:

Thrust:

Fzg = - M tg0 cos0 ° (114)

FzT = Tc5 -(T c +Ts)_i q(i)(_(i) (AT) (115)

cNotation corresponds to that of Ref. 22.
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Aerodynamics: ¢

F
za

L

= -qD A c_

L

f _CN(L)

L

+ _ q(i) CN(_) _(i)(L) dL-

i 5cz

(_a - L) dL

L

oN, d,]
Sloshing:

zs o . Mpi

Engine Inertia:

FzE = MR{LR _" +(_c-LR) 0" -w+{/o0

(116)

(117)

(118)

The dominant terms are T c 5 and MRL R 8, which are due to thrust deflection

and engine inertia respectively. These are sufficient for purposes of a simplified
analysis.

After a straightforward substitution of Eqs. (113) - (118) in Eq. (112), we
obtain

CqD - dynamic pressure
A - reference area
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Q(i) m (L)dL 8

+
qD A L(i)

+I IIoSLCNJMRLR_(i) (LT) _" _ qDA _(i)(_) b_ dL

I F(Tc + Ts ) _(i)(LT) a(j) (LT) + qD A (i)(L)
CN (Z)_(J)(L)d_
5a

+Z
J qD A °_L 8C N (L) ]

¢(i)(L) ¢(J)
Uo 8 _ (£)dL _I(])

q(J)

(119)

3.4 FLEXIBLE BODY MOTION OF VEHICLE

The rigid body motion of the vehicle has three translatioaland three rotation-

al degrees of freedom which are described by the general equations (29) and (33) re-

spectively. These, together with the equations for bending and slosh are developed in

detail in Ref. 22. Considering pitch plane motion only, the dynamics of the flexible

vehicle is described by (allnotation conforms to that of Ref. 22):
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Moment Equation

Iyy0" = Lc [Tc6-(Tc+Ts)_ q(J) a(J)(LT)]-(Tc+Ts)_q(J)_(J)(LT )

k

- MR _R l_o_ (_(j) (£T) q(j)

+ (IR + M R LR Le) (;(J) (LT) ] }t(J)

Z [MR (£R + Lc) _(j) (LT)
J

}_CN(L)[_ (La - L) d L
+ qD A[ 4 5"

L_

_ CN(L)-_oo _ J q(i) LSCN (_(La _ £)2 dL +E (La - L) (7(J) (L) dL

• L

- j_ool q(j)_ 5CN(L)_ (L a - L) _(J) (L) dL]

Normal Force Equation

mo (4l-U o0) = - (NItgcosoo) 6) - (T c +Ts) _q(j) (7(j) (L T)

%k + + - LR)_'-_ +6 S
0

+T c 6

LSCN(_) (_(J)(L)dL
- L) d£ +Z q(J)_f(La

j _ _o_

1 (_(j)o/LSCN (L)¢(j)(_)d_]
J

(_20)

{_2_)
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Sloshing

2
Pk Pk Pk

1 [
[Uo0 -*+0 (_Pk- Lpk)

Lp k

J
(122)

k=l, 2, "'"

Bending

_(i) + 2_(i)_¢(i)(l(i) + [0_(i)]2q(i)
Q(i)

n](i)
(123)

i = i, 2, •""

Usually, the bending modes are normalized at the engine gimbal point, which
means that

¢(i) (_T) = 1

for all i.

Sign convention and coordinate systems are shown in Figs. 5 and 6. We note
also that

W

U + {2 (124)W
O

The (linearized) engine actuator control system is described by

Engine Servo

2 2 (125)3+2_eO_ s +_o s+K o_ 6 = K o¢26c T L
e e c c e IR

where

-_i [M-R (LR+£c)¢ (i) (£T)+(IR+MR_R_c)O "(i) (_T)]}_ (i)

- MR _R UoZ a(i) (_T) q(i) (126)
i
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Lp|

Z I

Figure 6. Schematic of Sloshing Pendulum, Pitch Plane

3.5 AUTOPILOT EQUATIONS

The attitude control system for the vehicle employs feedback loops from

various sensors for purposes of stability augmentation, as well as to meet additional

performance requirements such as load relief and drift minimization. These feedback

signals are also given in Ref. 22 and are repeated below.

Feedback Signal

O F = ORG + 8pG + 0(2 + 0 a (127)

Position Gyro

(1"s + I)8pG = 0 +]_'_ _(i)(£G)q(i)

i

(128)
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Rate Gyro

(s2+ 2_ R _¢R s + _2)0RG 8[_+rio,i,,,0)q")] (129)

Aecelerometer

(s 2) :2 +2_ a_as +_¢a ea = u_ K a

_ _ [¢(i) (£A) _(i) _ _(i) (£A) I_
i [ o

ZF
Z

M t

q,il]

q_'+O e
0

(13o)

where ZF z is given by Eq. (113).

Angle-of-Attack Meter (Vane Sensor)

]= 0_ Ka _ _. (/i) (£m) q(i)
1

1u) 0 + ¢(i)(_m) (l(i
a m i

V
(131)

Engine Command Signal

5 e = K A<I + _>G F (s) (0 e - OF)
(132)

where G F (s) represents a filter transfer function.

3.6 COMPLETE EQUATIONS OF MOTION

There are two basic blocks of equations which describe the dynamics of the

vehicle autopilot. The first is that which relates the plant variables, 8, w, l"pk,
and bending variables, q(i), to the thrust deflection angle, 6. These are contained in

Eqs. (110) and (119): Bending

Eqs. (120) - (122): Rigid Body, slosh, bending effects

Because of the formidable complexity of these equations, some systematic

procedure must be adopted in order to exhibit the salient features of the system. We

begin by writing the equations in matrix form as follows.

[A] [X_} = [B] 6 (133)
4O



Here

[ ] - rectangular matrix

[ ] - column matrix

L J =- row matrix

and

0

W

{X} = Fpl (134)

%2
q(1)

It is assumed that two bending and two sloshing modes are significant. The

components of [A] and _B] are, in general, functions of the Laplace operator, s. It

is a straightforward, though tedious, matter to evaluate the components of these

matrices from Eqs. (110) and (119) - (122). They are written out in full in Appendix A.

We may now partition the matrix equation (133) as follows

A
11

A21

A12

A22

0 i D_

w ib2

rp1 = b 3

Fp2 b 4
...... r--

q(1) 55

2(2_) 26_

6 (135)

• where

All

A12

A21

A22

- 4 x 4 matrix

- 4 x 2 matrix

- 2 × 4matrix

- 2 x 2 matrix
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and write it as

21 A22J

(134)

From this relationship it is easy to see that all coupling between rigid and

elastic modes is contained in the matrices [A12 ] and [A21 ] .

The second major block of equations describes the autopilot and feedback

loops. These are (in matrix form)

5 = Gc 5 c - G E LDJ _X} (135)

5c = GM(0 c - OF ) (136)

OF = LEJ IX} (137)

The scalar quantities Gc, GM, and G E as well as the components of the row
matrix LDJ (all of which are functions of s) are obtained by direct comparison with

Eqs. (125), (126), and (132). The components of the row matrix, LEJ (which are also

functions of s) are obtained by comparison with Eqs. (127) - (131), and depend on the

types of sensors employed.

Using the set of equations (134) - (137), we may represent the signal flow in

the manner shown in Fig. 7. Here the single lines represent scalars and the heavy

lines represent vector quantities.

The matrices

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

o o o o_

m I

0 0

0 0

0 0

0 0

1 0

• 1_

are introduced to preserve the vector formalism. This diagram is useful only in a

limited sense in that it exhibits graphically the major coupling effects. Attempts to

derive quantitative indications of the influence of mode coupling are speedily enmeshed

in a computational quagmire.
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Figure 7. Matrix Schematic of Autopilot

Since a conventional autopilot controls attitude via rate and position feedback,

we may represent the signal flow schematic in the alternate form shown in Fig. 8.

This more closely resembles the actual configuration which is used for analysis. It

is still too complex for simple evaluation, however. Nevertheless, it is in a form

which permits selective simplification in a rational manner. The monograph on

"Attitude Control During Launch" 0Ref. 23) treats this subject in detail.

3.7 SPECIAL PROBLEMS

The type of vehicle considered thus far is a representative and somewhat

simplified version of actual launch vehicles. In any particular situation, various

special problems arise which require modification or extension of the methods pre-

viously described. Some of the more important problems of this type are discussed

in the following subsections.

3.7.1 Clustered Boosters

For certain space missions, the requirement for increased thrust dictates

the use of multiple rocket engines, which, in turn, means much larger tank structures

for fuel storage. Cost and fabrication constraints limit permissible increases in tank

diameters. This has led to the clustered tank configuration as typified by the Titan 1TIC

and certain classes of the Saturn vehicle.

43



0 t Load i_, IAmplifierl I Engine I "t'_ TorqueFeedback 4 ;

and _-_ Servo

_ Rigid Body

and Slosh

I_,narnics

___J igidBod,I/  oo ,ing I

I °°° lingI
%__J k_ }....I

Figure 8. Schematic of Attitude Control System

With liquid-propellant boosters a peripheral ring of propellant tanks is at-

tached to a center tank and the engines are supported on truss members connecting the

tanks; with solid-propellant boosters the motors are attached to a central solid- or

liquid-propellant booster. These clustered tank designs destroy axial symmetry and

also, in some cases, planes of symmetry. This results in a more complicated lateral

model where a number of cylindrical tanks are coupled by their elastic connections.

A vibration analysis for this case must take account of the displacement and

rotation in two mutually perpendicular planes: torsion and longitudinal motion. The

model of the tanks for displacement and rotation in each of the two planes would be

very similar to that discussed for the cylindrical booster. Provision must be made

to account for the motion of the outer tanks in these two directions due to the torsional

displacement of the center tank and the elastic connections. Longitudinal motions of

the outer tanks can couple with the bending motion of the center tank; it is also possible

that longitudinal motion will couple with lateral and torsional displacement.

The torsional properties in the model can be represented by the torsional stiff-

ness and roll inertia of each tank. The tanks must then be connected by the elastic

properties of the truss. The complete model for the clustered booster then consists

of the lateral model in two planes: the torsional model and the longitudinal model.

These models are then combined through the elasticity and geometry of the connections

to provide the stiffness and/or mass coupling.
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The usual numerical techniques for obtaining the system eigenvalues may

in principle be applied directly. However, with clustered boosters, difficulties are

encountered due to inadequate basic data (especially at the elastic junctions), on the

one hand, and the large number of lumped-mass points needed to adequately represent

the vehicle, on the other. Thus, inversions of very large matrices are required, with

the possibility of intolerable computational errors. Furthermore, there may be modes

of nearly equal frequency which will be difficult to separate both analytically and

experimentally.

One useful approach for calculating the modes of complex systems is the

component mode synthesis method(9). Here the modes of the individual pieces are

calculated individually and the combined modes are obtained from the modes of the

component parts. This method is based on the assumption that significant motions of

the individual tanks can be described by a small number of modes. If this is true, then

the solutions for the combined system can be performed in terms of fewer coordinates.

Most of the clustered booster work to this date has involved two vehicles --

the Titan IIIC and the Saturn I (and the second generation Saturn IB). Titan IIIC is

comprised of a center core liquid-propellant booster with two attached solid-propellant

boosters (Fig. 9). The connections at the bottom transmit axial load, shear, moment,

and torque; the top connection transmits only shear. Because of the nature of the con-

nections, it can be seen that yaw bending and longitudinal coupling can occur; pitch

bending and torsion is another possible coupling mechanism. Storey in Ref. 7, devel-

ops the coupled flexibility matrices for these two conditions. This method encountered

difficulty in that the number of stations required for adequate representation of the

system with the required transformations exceeded computer capacity.

The final Titan IIIC analysis presented in Ref. 26 utilizes the mode synthesis

approach. The longitudinal, torsional, and pitch and yaw bending modes are deter-

mined for each tank and are then coupled by the elasticity of the connecting elements.

The influence coefficients for these trusses were obtained experimentally.

The Saturn I vehicle consists of a center liquid oxygen tank with eight peripheral

tanks, as shown in Fig. 10.

The Saturn I vehicle consists of a center LO 2 tank with eight peripheral tanks

for, alternately, LO 2 and RP-1. These tanks are connected at top and bottom by

trusses providing axial, shear, and torsion restraint in both planes at the bottom plus

moment restraint in the tangential planes. The top connection provides similar re-

straint except for the fuel tanks, which do not transmit axial load. The trusses are

not symmetric with respect to planes of symmetry of the tanks, but this effect is

small so that planes of symmetry as defined by the tanks do not introduce large errors.

Kiefling (24) uses a mode synthesis approach for calculation of Saturn I modes.

Pitch, yaw, and torsion are considered uncoupled, and the effect of longitudinal
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propellant vibrations in the outer tanks is coupled with bending. A comparison with
test data shows very goodagreement in frequency, while agreement of mode shapes
is fairly good. The discrepancy, which is seenin the seventh and somehigher modes,
is in the displacements of the booster center tank. Since no control sensors are lo-
cated in this area, this discrepancy is of limited importance for stability and control
studies. The mode shapedifferences are due to deflections of the spider beam, the
structure connecting the top of the booster tanks and the secondstage.

Milner(6) establishes theoretically the uncoupling of pitch, yaw, and torsion

modes for a symmetrical clustered booster and investigates the effect of minor asym-

metry. Results of this study indicate that the effect of such coupling on natural fre-

quencies is minor; mode shapes are not presented.

The basic analytical features of the clustered booster problem are described

in a paper by Lianis and Fontenot(8) which considers an idealized booster with uni-

formly distributed flexibility and mass. Taking a four-tank configuration (Fig. 11),

for example, it is assumed that each cross-section of a tank has two components (x

direction and y direction) of rigid body translation and that each cross-section of the

four tanks considered as a unit has two components (x direction and y direction) of

rigid body translation. The tanks are assumed to be pin-joined at the points A, B, C,

D, A _, B', C _, and D'as shown in Fig. 11. They are free to vibrate independently

at all other points. It is obvious from the way the tanks are joined that the axis of

rotation is the central z axis of the booster. Thus, the rigid body motion of an end

section is described by three independent components, namely, translation in the x

direction, translation in the y direction, and rotation around the z axis.

Figure 11. Geometry of Clustered Booster and Axes of Reference

The z axis was chosen as the axis of rotation for each cross-section of any

tank Since this choice does not cause any additional rigid body motion (for small dis-

placements) and it furnishes simple, kinematic boundary conditions. However, the

flexural rotation of the end section of each tank in the xz and yz planes need not be

equal because it was assumed that the points A, B, C, D, A', B I, C', andD _ are
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pin-joints. This assumption eliminates the need for introducing additional reaction

bending moments transmitted through the points of connection between the tanks, and

it simplifies the static boundary conditions.

Using the conventional theory of bending and torsion of beams, we may then

write for each tank (8)

54xi 2/52 xi 52 ¢i,_

5z _St _i

_4 Yi 2/52 Yi 52 _i_

a _--- +z *  1-27//
5 2

52¢i b (-_)R 2 2_ia
2 t 25z 5

= 0 (138)

= 0 (139)

2 _2 xi_
- 2 b R 2 a 2 Yi +

t 2 ¢i -_t2 /
= 0 (140)

Here

i = I, II, III, or IV (the tank number in Fig. 11)

and the numbers c i and v i have the following values

I

II

HI

IV

ci v i

0 1

-1 0

0 -1

1 0

Symbols are defined as follows:

a = I

EI
b -

GC
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h

EI =

GC =

ratio of weight of tank to total weight of tank plus liquid

uniform flexural stiffness of each beam

uniform torsional stiffness of each beam

W = weight of tank per unit length

R = radius of each tank

g = gravity acceleration

One may proceed in the usual way by assuming a solution of the form

x i (z, t) = X. (z) T (t)
1

Yi (z, t) = Y. (z) T (t)1

¢i (z, t) = ¢_(z) T (t)

i =I, II, III, IV

(141)

(142)

(143)

a. The x displacement of both end-sections must be the same for all tanks, i.e.,

X I = XII = XII I = XIV for z = 0 and z = £, where £ = the length of the booster. This
condition provides six equations.

b. The y displacement of both end-sections must be the same for all tanks, i.e.,

YI = YII = YIII = YIV for z = 0 and z = £. This condition furnishes six equations.

c. The twists of both end-sections must be the same for all tanks, i.e., _I = _II =

_III = _IV for z = 0 and z = £. This condition furnishes six equations.

d.

CAS usual, it is found that physically o_ represents the frequency of vibration.

The total shear force in the x direction at each end must be zero. One knows from

the engineering theory of bending that the shear force in a beam is proportional to

the third derivative of the transverse displacement with respect to the axial co-

IV

ordinate. Therefore, this condition is satisfied if _ d 3 Xi/d z 3 = 0 for z = 0 and
i=I

z = _. This condition furnishes two equations. The total shear force in the y

IV

Z d 3direction at each end also must be zero, i.e., Yi/dz = 0 and z = _. This
i=I

5O

After substituting (141) - (143) into (138) - (140) we obtain a system of 12

equations involving a separation constant, cv2, and 40 constants of integration. ¢ The

latter are evaluated from the boundary conditions which may be summarized as follows:



condition furnishes two equations.

e.

fw

The total torque at both ends is zero.

to the first derivative of the angle of twist, this condition leads to

for z = 0 and z = _, which furnishes two equations.

Since the torque of a beam is proportional

IV

E d_i/d z = 0
i=I

It is assumed here that each tank is simply supported at both ends on the two

adjacent tanks. The bending moment in a certain direction is proportional to the

second derivative of the transverse displacement in the corresponding direction

with respect to the axial coordinates. This condition leads to the following 16

equations: d 2xi/dz 2 =0forz =0andz =_, d 2Yi/dz 2=0for z =0and z=_,
where i = I, II, HI, and IV.

By counting the foregoing conditions, one observes that there are exactly 40

equations for the 40 unknowns.

One thus obtains a system of 40 linear homogeneous equations for the 40 un-

knowns. A nontrivial solution exists if the determinant of the coefficients is zero.

This condition permits one to obtain the natural frequencies. Except for certain ob-

vious cases, the solution must be obtained via some iterative procedure on a computer.

In general, the Lianis-Fontenot study indicates the presence of closely

coupled bending-torsional modes, the closeness of certain natural frequencies, and the

multiple occurrence of others. For this case, the difficulties associated with the con-

trol system design are not at all trivial.

3.7.2 Sloshing in Flexible Tanks

The importance of the liquid sloshing phenomenon in the autopilot control of

launch vehicles has long been recognized, t In the usual methods of analysis, it is

found that the dynamic properties of the sloshing liquid may be closely approximated

by a series of pendulums (or harmonic oscillators) whose size and location along the

vehicle depend on the vehicle's mass, inertial, and geometric properties as well as

on the properties of the liquid and its level relative to the tank. The assumption is

always made that the tank is rigid.

If, however, the tank wall is flexible, and the liquid has a free surface, the

interaction between the liquid motions and elastic deformations of the tank wall could

become significant. Furthermore, conventional analytic investigations consider the

liquid-filled structure as a beam, assuming the tank long enough so that beam pro-

perties predominate. Actually, many tank walls have a comparatively small length-

tCf. Refs. 20, 29, and 30.
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to-diameter ratio, which means that shell action could be the overriding factor.

The analysis for the case of a coupled elastic tank and liquid propellant be-
comes quite complicated even in highly simplified versions. The most complete study
of the problem is by Lianis and Fontenot(31). Their preliminary results show that
the low frequency oscillations (the only significant ones) are not appreciably affected
by the presence of elasticity and inertia of the shell.

D

Thus, except possibly for radical new tank configurations, the elasticity of

the launch vehicle structure does not significantly affect the slosh modes and fre-

quencies calculated by assuming a completely rigid tank.

3.7.3 Attached Masses and Component Modes

A typical launch vehicle has many secondary structures attached to the main

beam structure. Among these are rocket engines, instrument packages, turbopumps,

sloshing masses, etc. In the computation of bending mode data, the usual practice is

to artificially uncouPle all secondary masses and determine the natural frequencies

and bending modes for the basic beam structure. The degrees of freedom associated

with the secondary masses are then introduced via appropriate forcing functions and

kinematic contraints. The generalized coordinates obtained in this way are simply

related to the actual elastic displacements of the beam, even though the bending modes

are coupled to the other degrees of freedom as well as to each other. Alternately, one

may include the secondary masses in the mode calculations, in which case the result-

ing generalized coordinates are not simply related to easily measured displacements.

Either approach is valid so long as the results are properly used and interpreted.

For more complex structures such as clustered boosters, it would appear

desirable to calculate the modal properties for the individual tanks and then somehow

integrate the results to give the mode properties for the entire structure. A method

for doing this, called "component mode synthesis," has been developed by Hurty(9).

It can be applied to any structure which is arranged basically as a series of inter-

connected components whose individual mode properties may be separately determined.

A complete description of the method in the general case is quite lengthy and does not

appear to be warranted for present purposes. However, a simplified version, which

may be applied to most vehicles of interest, can be developed with relatively little
effort.

We suppose that each of the (artificially disconnected) components of a

structure may be described by the matrix equation

[m]r [X_r +[c]r [X}r = _f]r (144)
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where

[m] r

[c]r

[flr

{X]r

= mass matrix of r th component

- stiffness matrix of r th component

- applied force vector for r th component

- coordinate vector of r th component

The modes and frequencies may be obtained in the usual way.

a new coordinate vector by

After defining

[X]r = ER]r _q]r (145)

where JR] r is the modal matrix (i.e., the matrix whose columns are the eigenvectors

of the r th component), we obtain after substituting (145) in (144}

['_]r [q}r + [k]r [q]r = [Q]r (146)

where

[_]r = [R]: [m] r ER] r

[k] r = [R] T [c] r [R] r

[Q]r = [R]:[f]r

-- generalized mass for rth component

- generalized stiffness for r th component

- generalized force for r th component

The vector [q]r is the generalized (normal) coordinate vector.

We note that _]r and [k] r will be diagonal matrices if the eigenvalues are
distinct.

It can also be shown that

where

[k]r = [_]r [W]r (147)

[W] r = U_r2..........

""" _r

(148)
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and the O_rj are the natural frequencies for the rth component.

For the complete system we may write

{x} = [R] fq}

where

(149)

IX}l}Ix} " [q}

[f }mJ

JR]

_]1 o-

0

[R] 2

We will also use the notation

[m]

m

[m]

0

m

0

Ira] 2

I*_ltwl0Oi °

"'[m]m__

[k]

[k] 1

0

0

[k]2.o"
Io t

mlttl

"'£k]
In

The total kinetic energy for the system (m components) is then found as

1 T
T = "_Ix] [m] Ix]

which by virtue of (149) becomes

1 T
(150)
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Furthermore, the potential energy in the m components is

V = I{x}T [e3 Ix}
m 2

which takes the form

U = 1 {q}T [k] [q] (151)
m 2

after using (149).

Thus far, nothing has been said about the constraints introduced by the points

of connection between the component members of the structure. If we let

Ak = deflection of the kth connection

_k = stiffness of kth connection

then the potential energy in the connection Joints is given by

c = -2- 7k Ak

This may be expressed in matrix form as

U 1 T
c = "2- {A} [,y] {A} (152)

However, the deflection at a connection point may be expressed in terms of

the system coordinates by

{A] = [B] {x} = [B] [R] [q} (153)

where the matrix [B] is obtained from the geometry of the problem.

The total potential energy is then given by the sum of (151) and (152) which

takes the form

v =T{q3T([k] + [A]){q} (1s41

55



where

[A] = [R] T [B]T [_7 [B] [R] (155)

The dynamical representation for the complete system is then written from

the Lagrangian formulation

d /_T_ 5T bU
(156)

i = 1, 2, ''', p

where Qi is the force corresponding to the generalized coordinate qi" The total

number of equations, p, in (156) is equal to the sum of the individual degrees of

freedom of all the components in the structure.

Modes and frequencies for the system (156) may then be calculated in the

usual way. These frequencies will be identical to those obtained if the structure were

analyzed in the conventional classical manner. However, the eigenvectors (modes)

obtained from {156) must be premultiplied by the [R] matrix to obtain the eigenvectors

relative to the original Ix} coordinate system.

The main advantage of the component mode method is that the complete sys-

tem representation (156) may be systematically built up from mode data obtained from

the individual components. This approach has significant advantages in many cases.

The following simple example will serve to clarify the general procedure.

Consider the simple spring mass system shown in Fig. 12a.

For purposes of determining natural modes and frequencies by the component

mode method, we 'break" the system at the spring c 2 (which is therefore taken as a
connection point later). The two components thus formed are shown in Fig. 12b.

Taking the first component we have

ml_l +cl (Xl-X2) = 0

+c = 0m2_2 1 (x2 -Xl)

In matrix form

[0 1 m2_[x2j01I:ll+ [-::-clI::l = [00lc
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or

[m]l [_}1 +[C]l {X}l = [0}

The frequency equation is

1[c]1-_2 [m]ll = 0

which leads to

2[ mlm2-cl(m 1+m2)1 =
oo u_2

Consequently, the etgenvalues are

2

1

c 1 (ml + m2)

m 1 m 2

2
_2 = 0

The modal matrix is

[R]

m

1

1

m 1

m2

1

1

and

[m] =
1

D

m 1 (m I + m 2)
0

m 2

__ 0 (m I + m2.,)_)

For the second component, we have simply

m3 x3 + c3 x3 = 0
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From this, we find

2 c3

_3 -
m 3

_]2 = m3

[R] 2 = 1

Consequently, the composite modal matrix takes the form

[R] [i I Im 1

m 2

0 0

Now the deflection at the connection point may be written as

A = x 2 - x 3

(157)

IXI= [0 1 -13 x2

X

which means that the matrix [B] is

[S] = [0 1 -1]

Taking note of the fact that at the connection point, the stiffness, _ = c 2, we
obtain for the matrix [A] of Eq. (155)

m

\m2/
m 1

[A] = c 2 -_22

m
1

m__2

m

m 1 m 1

m 2 m 2

1 -1

-1 1
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Also

m

m I (m I + m2)

m 2

= 0

0

0

(m I + m2) 0

0 m3_"

[k] = [R] T [c] [R]

m
m

ml (ml + m2) 2

m U)l 0 0
2

0 0 0

2

m 0 0 m3 _3_

Now, with the [q] vector defined by Eq. (149), a straightforward application

of Lagrange's equation (156) yields

o _ L%J

4-

1_¢ 1 _ c

\ m2

m 1

-_m c2
2

m

1
m C

m 2 2

m 1

-_2c2

C

2

-c 2

m 1

m 2 c2

-c 2

(c2 +c 3)

iql,

q2

q3

C

0

0

(15s)
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The modes and frequencies for the composite system are obtained from the

above matrix equation in the conventional way.

In order to compare numerical values generated by the component mode

technique with those obtained via classical methods, we assume the following numer-

ical values

m I = 10 slugs c I = 5,000 Ib/ft

m 2 = 20 slugs c2 = 1,000 Ib/ft

m 3 = 40 slugs c3 = 6,000 Ib/ft

From this, we find

2
_1 = 750 _i = 15

2
u_2 = 0 _2 = 30

2
u) 3 = 150 m. 3 = 40

The eigenvalue determinant equation for the system (158) becomes

(11,500 - 15 W 2) -500 500
-500 (1,000 - 30 W2) -1,000

500 -1,000 (7,000 - 40 a)2)

= 0

or

6 o4 2o_ -975 + 16. 375× 104 -375× 104 = 0 (159)

We find, therefore, that the eigenvalues together with the respective eigen-

vectors are: _

2
o_ = 27. 176 I'l, 6.60

L 4.415j

tEigenvectors are normalized by setting the leading component equal to unity.
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2
O_ = 179.65 ,

2
o¢ = 768.15 , tllO. 022

L O. 0212J

To check this value with the results obtained via classical methods, we write

the equations of motion for the system of Fig. 12a, viz.

ml _1 + Cl (xl - x2) = 0

m2 _2 + Cl (x2 - Xl) + c2 (x2 - x3) = 0

m3 x3 + c3 x3 + c2 (x3 - x2) = 0

In matrix form

[:° Lo °l[x][i]
0 m3.{L_:j -c2 (02 +c3 x3

(160)

or

Using the given numerical values, the eigenvalue determinant equation is

(5,000 - i0 _2) -5,000

-5,000 (6,000 - 20 _2)

0 -I, 000

0{-1,000

(7,000 - 40 2)

= 0

o_6 - 975o_ 4 + 16. 375x 104o_ 2 - 375x 104 = 0 (161)

which is the same as (159). Hence, the eigenvalues are the same.

The eigenvectors for the system (160} are found to be:
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2
= 27. 176 , [11O. 945E

o. 1599j

2
U_ = 179.65 , IllO. 640

L-3.445 J

2
= 768.15 , tllO. 536

k 0. o226j

If now each of the eigenvectors obtained for the system (158) is premultiplied

by the matrix [R] of (157), and then normalized by setting the leading element equal to

unity, we find that they are identical with those obtained above.
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APPENDIX A

COMPONENTS OF THE MATRICES [A ]

AND [B} IN EQUATION (133)

Listed below are the components of the 6x6 matrix [A ] and the 6×1 matrix

[B } which appear in Eq. (133). These components are evaluated by direct comparison

between the matrix representation (133) and the corresponding scalar equations (110)

and (119) - (122). The proper format is provided by the definition of the state vector

IX] as given in Eq. (134).

all = [Iyy + IR - M R l:]s 2 ?DA fL 5 CN(1)(la-i)2d_]s
+ [--_o Jo a_

a12

- M R I c IJo

[qDA foL 5CN(i)= [MR (IR + lc)] s- 5(X
[Uo

a13 = MpI IPl [Jo

a14 = Mp2 Ip2 0 o

= + ¢(1) (iT) + (iR MR a(1) (iT)] 2a15 [MR(_ R Ic) + _R_c ) s

qDA fo L 5 CN(i) dt1
+ -- S

L U° 5_ (l a - l) ¢(1) (l)

+ (Tc + Ts)[lc(;(1)(iT) +_(1)(iT)J + MR iR 0oa(1 ) (iT)

o L a CN(I ) if(l)- qDA _ (l a-i) (D d_
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16

+
_P__(o L _ CN(_ )

_(2){_T)J 2+ (IR +MR_R_c ) s

(0 d_Is

fo L _ c N (,0 o,{2)- qD A

a = s2 fqDAj_o L
21 - MR (_c - £R ) -[Uo

+too Uols-,[MR I)o - Mt g cos 8o]

U° "_o _ d/

a23 =-Mp1 Uo

a24 = _ Mp2 (1o
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= (iT) + _R (_T)J s2 -[ Uo

lq Afo L bCN(_)O.(1)...
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a26

a31

= _(2)

qD A fL _CNa) 5(2) d_1(IT) + £R cr(2)(IT) s2 -L-_o jo _ (_)
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APPENDIX B

EQUATIONS OF MOTION USING ONE

DIMENSIONAL INFLUENCE FUNCTIONS

Instead of deriving the motion of a flexible beam from the differential equation

approach, we may instead start with the associated integral equation in which the con-

cept of an influence function plays a fundamental role. This approach is indeed more

common in conventional structural theory and does provide an added degree of physical

insight. It will accordingly be developed here. t

The pertinent geometry and coordinate system is shown in Fig. B1.

(O,t)

1_

¥
/-%

IFz (_,t)- m (1)_"(_,t)]d_ _

[My (l, t)- B(l) _ (l, t)[ d_ tN._" _ l
t.

<o,,> /
t)

I
Inertial

_--- Reference

Figure B1. Elastic Vehicle Deformation

The origin for the l-axis coincides with the nose of the vehicle. The displace-

ments are described by a function _ (l, t) which represents the instantaneous position of

the elastic axis of the vehicle with respect to the coordinate axes. The vehicle is

assumed to be subjected to distributed external forces and moments, F z (l, t) and

r(l, t), respectively. The kinetic reactions are m (l) %'(1, t) and B (l)_'(l, t) for force and

? The material contained in this Appendix has been written by Robert Westerwick.
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moment respectively. Dot notation indicates differentiation with respect to time; prime

(i) notation indicates differentiation with respect to L Quantity m(i) is the mass dis-

tribution and B(l) is the rotary inertia distribution of the vehicle.

The four required equations of motion are as' follows:

a. Equilibrium of lateral forces:

foL[ ]z(_,t)- m(l) _'(i,t) d£ = 0 (B1)

bo Moment equilibrium of forced vibration about a transverse axis through the origin:

foL IF ] t) (_) (_,t)}z(I,t)-m(£) _'(£,t) i+M (i, -B _-i dl=0 (B2)
Y

C. Displacement of the beam with respect to the inertial reference:

+fo L 55 IF (v,t)-m(v)_'(v,t)]
_(£,t) =_(0,t) +_'(0,t)_ c (i,v) z

-_oLCSa(£,v) [My(V,t)-B(v)_ "' (v,t)] dv

dv

(B3)

d. Rotation of the beam with respect to the inertial reference:

_'(_,t) =_'(O,t) + /CaS (_,v) [Fz(V,t) - m(v)'_'(v,t)] dv

-fo°"(',V)[My(Y,t)- B(V)_ TM (V,t)] dv (B4)

In the above, C 66 (t,v), C 6a (_,v), C a6 (.t,v), and C aa (t,v) are influence

functions that relate the displacement (or rotation) at station I to a unit load (or moment)

at station y, i.e.,

c 55 (_,v)

c 5a (i,v)

c a6 (t,v)

C aa (i,v) = rotation at _ due to a unit moment at v
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Equations (B3) and (B4) provide the relation between the elastic, inertial, and

externally applied forces• The integral equations (B1) through (B4), in conjunction

with the additional equations required to define the externally applied forces and mo-

ments, F z (_, t) and My (_, t), govern the motion of the unrestrained elastic vehicle.
However, practical solutions can only be obtained by resorting to numerical methods.

B. 1 NUMERICAL METHOD

Consider the vehicle as being a free-free beam composed of "n" discrete

masses located at points along the length of the beam (Fig• B2).

m

_0[ (t)
i i

Fzg(t - mj _'j (t)1 m k

q (t_

.__(t) k =n- 1

% (t)

, . _j[(t)l ,,
Inertial
Reference

Figure B2• Point-Mass Representation of a Flexible Vehicle

For the system shown in Fig. B2, the integrals in Eqs. (BI) through (B4) may

be replaced by discrete summations and the following equations obtained:

a• Lateral Forces

Fz 0-m0_'0+Fz 1 -ml_l +••" +Fzj-mj'_j+'•• +Fzk-mk_k=0 (Bla)

b• Moments

(Fzo-mo _'0)_0- BO _"0 + Myo+ (Fz

"" dr "" 0

- +

+(Fzj mj_j)£j_Bj_j Myj

+ My k = 0

-m I _'l)J_;- B 1 _'; + My I

'+ +(Fzk- k ) -Bk_• • • k

(B2a)
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c. Displacements

k k

, _6 -mj_'j)+_ C6__i=_0 +_0 £i + Z Cij (Fzj ij (Myj-Bj_j)
j--o j=o

(B3a)

where

i=0, 1, . .., k

d. Slopes

k k

E ""ij (Fzj-mj_'J)+ _ CIj (Myj-Bj_j)
j=0 j=0

(B4a)

where

i=0, 1, . . ., k

66 6_ Ca8 COt_C.. , and
In Eqs. (B3a) and (B4a) the influence coefficients C ij ' 1j ij ' ij

replace their counterparts, influence functions, which were used in the integral equations

(B3) and (B4). Influence coefficients are defined as follows:

66
C..

1j

6c_

C ij

CO_6
i1

= displacement at i due to a unit load at j

= displacement at i due to a unit moment at j

= rotation at i due to a unit load at j

C_._ = rotation at i due to a unit moment at j
_J

The influence coefficients are symmetric, i.e.,

66 66
C.. =C..

z.1 j1

1j ]1
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(see Ref, 4, pp. 17-22, for a discussion of influence coefficients and the proof of

symmetry. )

To facilitate writing equations in matrix notation, the following example is

used. Let the free-free beam of Fig. B2 consist of three discrete mass stations num-

bered 0, 1, 2 from left to right. Eqs. (Bla) through (B4a) become:

a. Lateral Forces

b.

Fz0+Fzl + Fz2 - m0 _'0 - ml _'1 - m2 g2 = 0

Moments

Fz0£0 + FZl/'1 + Fz2£2- mo'_ogo - ml tlgl - m2_2_" 2

- - + =0B1 _'i B2g 2 + My 0 My I + My 2

(Blb)

(B2b)

C. Displacements

, 55 C 55
_0=_0 +_0 £0 +c0, 0 (Fz 0-m0_'0) + 0,1 (Fzl - m1_'1 )

+ C 55
0,2 (F z2 - m 2 _ 2)

_0_ "'1

+ C0,1 (Myl - B1 _1

C8_ "" t
+ 0,0 (My0 - B0_0 )

+ C5_
0,2 (My2- B2 _'2)

, _ 55
_1=_0+_0 '1 +C1850 (Fz 0 m0_'0> +Cl,I(Fz I -m 1_1 )

55 5a

+ Cl, 2 (Fz 2 - m292) + Cl, 0 (My 0 - B 0 gO )

+ C 5_ .., 5_
1,1 (My I - B1 _1 ) + Cl, 2 (My 2 - B2_'2)

(B3b)
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_2

d. Slopes

I

_o

0

o

_2

, 55 .. 55
= _0 + _0 _2+ c2,0 (F% - m0_0) + C2,1(Fzl - ml _'1)

+cS6 s_ (_o Bo'Q)2,2 (Fz2 - m2"_2) + C2, 0

6a 8a
+c2,1(Myl-nl _'_')+C2,2 (My2- B2_"2)

' C a6 Ca6
=_0 + 0,0 (Fz0- m0 _0) + 0,1(Fzl - ml'_l)

+ Ca8 aa
0,2(Fz2- m2 _'2)+ C 0,0 (My0-B0 _'0 )

_ c_ (½2 B2"_'2)+C0,1 (My1 - BI"_;) + 0,2 -

, Ca6
= _0 + 1,0 (Fz0 - m0_'0)

a6

+ C1, 2 (Fz 2 - m2 _'2)

0/0/

+ C1,1 (MY 1 - B 1_';)

a6

+ c1,1 (Fz I - ml_l)

OZOZ "'I

+ C1, 0 (MY 0- B 0_0 )

aa _,
+ C1,2 (My2 - B2 2

=_o + ca6 ca6
2,0(rz0- m0_0) + 2,1(Fzl- m1_'1)

+ CO_6 olot
2,2 (Fz2 - m2 _'2) + C2, 0 (MY 0 - B0 _'0)

• "o _ "-i

C_(_(Myl _ B1_1 ) + - B2_2)+ C2, 1 C2,2 (My2

(B4b)
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#

The equations of the forces and moments may be written as:

m
I

Fz 0

Fz 1

1. Fz2

l0 11 121 1 1 My 0
[ ,oo ]m , . m _ m

11 12 I 1 1

My 1

n | m

m 0 0 0 ' 0 0 0I
I

0 m 1 0 ] 0 0 0

I
0 0 m2l 0 0 0

T
0 0 0 IB1 0 0

I

0 0 0 ] 0 B 2 0
I

0 0 0 I 0 0 B 3
D m

"J #'t

t"2

0

t"2

- =0

The equations of the displacements and slopes may be written as

_2

I

_o

&

_2
. m

B

1 110
I

1 I tl

I

1 I1 12

0 1

0 1

0 1

 o'I

I oI
d
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+

i

65 55 56

C0,0 C0,1 C0,2

85 55 65

CI,0 CI,I CI,2

58 55 55

( 2,0 C2,1 C2,2

c_8 CO_5 CO_5
( 0,0 0,i 0,2

_5 COe5 cO_5
( 1,0 I,I 1,2

J 5_
I
I CO'O

CI,o

5a

e2,o

8u 8oi

C0,1 C0,2

5_ 5_

CI,1 C1,2

8_ 8_

C2,1 C2,2

C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

n,8 or8 cot5 I c_ol ozc_ oeoz
(2,0 ( 2,1 2,2 [ C2,0 C2,1 C2,2

m

X _

m

Fz 0

Fz 1

Fz 2

M
Yl

I

m. 0 0 i 0 0
u I

I
I

0 m 1 0 I 0 0
I
]

0 0 m. I 0 0
z I

I
T

0 0 0 : B 0 0

I
I

0 0 0 1 0 B 1

I

I

0 0 0 1 0 0
i

u

0

0

0

0

B 2

,°

After partitioning the above matrices as shown by the broken lines and infer-

ring an "(n+l)" mass station model from the 3-mass station example we can define the

following submatrices:

55
C

i

55

CO,O

55

Cn-1,0

55 88

• C0co, 1 • . $n-1

58

....... Cnl 1
_ _n_

D

C0, 0 ..... C0,n_ 1

• w

C _ C _
n-l,O .... n-l,n-I
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C COl -a6 6

0,0 ..... O,n-1

C or6 C _6
n-l,O .... n-l,n-1

C 8_ =

m

-6_ 6_

C0, 0 ..... C0,n_ 1

C6_ C 6or
n-l,O .... n-l,n-1

w

7

*1

_n-1

I =

m _

1

1

1

_ m

10

11

_- •

--

Fz _

Fz o

Fz 1

Fzn_ 1

My 1

Myn_ 1
m m

Din _

m

0 ..... 0

0 m 1

O... 0

0.0

0 ran_I

DB--

B 0 0 .... 0

0 B 1 • • • 0

0 0 . . . 0 Bn_ 1

The previous matrix equations may now be expressed as:

If"TT I(T_ { FIMyl - L'FDmO DBOI L"r_tl}"

=0 (B5)
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(B6)

where the ()T notation denotes transpose of a matrix.

Equations {B5) and (B6) are ordinary differential equations that represent the

equations of motion for a simplified mathematical model. The adequacy of this mathe-

matical model is primarily dependent on the number of mass stations chosen and the

accuracy of the structural influence coefficients.

It may be appropriate at this time to mention that the matrix of influence co-

efficients is singular, i.e., there are two rows and two columns of zeros. These zeros

arise because the influence coefficients are calculated with respect to the reference

station, which in the previous example was station 0; therefore, any influence coeffi-

tt C _
cient C0, i or i,0 will be equal to zero. The fact that the matrix of influence coeffi-

cients is singular is of no consequence, since no inverse operation is ever performed
on this matrix.

B. 2 SOLUTION OF MATRIX EQUATIONS OF FORCED VIBRATION IN NORMAL

COORDINATES

We now define the matrices of Eqs. (B5) and (B6) as follows:

A T = F =

_T 1
DI _

Dm

[:j [:] [c00c0]z = A = 1 z 0 = C = CeV5 C°l°l

Equations (B5) and (B6) may now be written in the following abbreviated form:

A T (F- DI'z') = 0 (B7)

z=A z0+ C (F- D I'z) (B8)
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Consider the homogeneous equations obtained from Eqs. (B7) and (BS) by

equating the externally applied forces and moments to zero, i.e., vector F = 0.

From the theory of ordinary linear differential equations it is known that
solutions of the form

ic0t
z = _ e (B9)

exist. After differentiating twice with respect to time and substituting the result into

Eqs. (B7) and (BS), one has:

o_2A T D I_= 0 (B10)

__ A_ ° + _2 C D/_ (BII)

Equations (B10) and (Bll) constitute a set of 2n homogeneous linear algebraic

equations. Physically, solutions to these equations represent the natural modes of

vibration for an unrestrained elastic vehicle. The natural frequencies are given by

the _o's and the natural mode shapes by their corresponding _'s. The vector _? is

partitioned as

0(_I} (nxl)_(2n x 1) = _}(nxl)

where the vector _ represents the modal deflections and the vector (T represents the

modal slopes at stations 0, 1, 2, ..., n-1 respectively.

The _, (r notation is introduced at this point to remain consistent with usual

notation for modal deflections and slopes. The z-vector components _ and _ ' which

correspond to total deflections and slopes have been abandoned since the introduction

of r/, the modal vector.

_0 is a vector of order two defined by-

01010
where G0 and (70 are the deflection and slope respectively at station 0, the reference

point.
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Consider Eqs. (B10) and (BII) for w = 0. W = A W0 is a nontrivial solution

that satisfies the equations. Since W0 is arbitrary, any two linearly independent choices

are admissible. The resulting vectors Wi = A W0,i (i= 1,2) are the so-called "rigid
body" modes• Itwill be found convenient to choose

Fll

70,I = (m2)
L0J

_0,2 = ' (m3)
!-1 I
Wb. _

where _" is the £-coordinate to the center of gravity of the vehicle and is given by

1 T Dm_

1 T D m 1
(B14)

If the equation, Wi = Ar}o,i, is rewritten in terms of the elements of the matri-
ces, one has:

¢0

¢1

"!¢n-1

cr0

.%-1J

1 _0

1 _1

• •

• •

1 I
n-1

0 1

0 1

0 1

(B11 a)
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Substituting _0,1

r_l=

D
m

@0 1

_I 1

_n-1 1

a o 0

a 1 0

ff 0
n-1

in (Blla) one obtains

l o

1

1

1

1

1

; or

@0 = 1

¢1 = 1

Cn-1 =i

(70 = 0

(Yl = 0

n-1

(B15)

Equivalently:

Now substituting

772=

ri"1

m

1 I o

1 _-1

0 1

0 1

0 1

in (Blla), one has

(f - tn-l:

-1

-1

"i-1

89

@0 = A_ 0

_1 = All

or _n-I = A_n-I

o"0 = -i

(71 = -1

• ,¢.

(Yn-1 = -I

(B16)



Equivalently:

where Al is the distance from the center of gravity to the point in question.

Plunging and pitching modes are shown in Figs. B3 and B4.

¢ (_)

1

i °ii_

Figure B3. Plunging Mode

¢ (2)

A_
_2 -1

_,,_'=_,__. o.

Figure B4. Pitching Mode
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The remaining 2n - 2 solutions to Eqs. (B10) and (Bll) represent the elastic

modes of vibration. Thevector 170 can be eliminated from (Bll) by its premultiplica-

tion by the matrix A T DI. This gives:

AT DI17= A T DIA1] 0+ ¢02A T DIC DI1] (B17)

From Eq. (B10):

w 2A T D I_7 = 0for w_0

Therefore, the left side of Eq. (B17) vanishes and one gets:

A T D IA170 = -w2 AT DIC D I17

170 = _w2 (A T DI A) -1 A T I_ C _ (BI8)

Substitution of 170 from Eq. (B18) back into Eq. (Bll) gives:

17=-w 2A(A T DIA) -1 A T D IC D I17+w 2C D I17

I- A (AT DIA) -I A T C 1)117= _-_17
(B19)

1
Let k = --

w 2

I- A (A T D I A) -1 A T DI]C D I 17 = ).17 (B20)

Equation (B20) is in the form of a standard eigenvalue problem for a conser-

vative system. The 2n- 2 nontrivial solutions to Eq. (B20) yield the elastic bending

modes and their associated frequencies. The 2n- 217i's are the mode shapes (eigen-

vectors), and the ki's are the reciprocals of the squares of the modal frequencies

(eigenvalues).

The 17i's and ki's may be efficiently obtained via digital computer using the

method of matrix iteration. Reference 25 (p. 62, p. 269, p. 356) present s the method

of matrix iteration currently used in the "General Missile Vibration Mk II" digital

routine, which is a general program to obtain frequencies, mode shapes, and general-

ized masses for lumped-mass systems.
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B. 3 ORTHOGONALITY OF THE EIGENVECTORS (MODE SHAPES)

Let H i and T]j be two distinct eigenvectors having k i and kj as their associated
nonzero and distinct eigenvalueso From Eq. (B20) one has:

I - A (AT DI A) -I AT DI] C D IHi= kir_i (B20a)

II - A (A T D I A) -1 A T DI] C DI Hi = kj ?]j (B20b)

Premultiplying Eq. (B20a) by _T DI:

tIT DI[I - A (AT DI A)-I AT DI] C DI?_i =Xi_T DI?7 i

_TjT D I C D I77 i- T DIA (AT DIA) -1 AT DI C DI_7 i =X in T D I_i
(B20a')

FromEq. (B10), A T DI_= 0for a) _0; thereforerl T DI r A= 0.

matrix, DI T = DI; therefore _jT DI A = 0.

Equation (B20a') now becomes

_jT DI C D I _i = Xi _jT DI Hi

Since DI is a diagonal

(B21)

Now transposing Eq. (B20b), one has:

_j DIC-r_ j DICDIA ATDIA) -

Since C is symmetric, C T = C above.

T
A T = kj rlj

Postmultiplying by D I vii:

t_j D IC DIHi-rlj D IC DIA A T 1

But A T DIt1 i = 0 by Eq. (B10), so:

rljT D I C D Iv)i= Xj r)jT D I_Ti

A T D I r}i = kj _jT DI r_i

(B22)
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Subtracting (B22) from (]321) gives:

(Xi-Xj) I_j TD I_/i-- 0; i_j (B23)

Since >'i and >,j were assumed to be nonzero and distinct, it follows that

l_j T DI_i = 0; i_j (B24)

Equation (B24) states the orthogonality properties of the eigenvectors; i.e.,

any eigenvector 17i is" orthogonal to any other (different) eigenvector 17j with respect to
the inertial matrix DI. Although (B24) explicitly applies only to the eigenvectors

corresponding to the elastic modes, it can be shown by direct substitution that it also

encompasses the rigid body modes.

To illustrate, let us again consider a beam composed of 3 discrete mass

r11

stations: 0, 1, 2. We have already found r/1 = 0 I ; 172 =
t. .m

1_1T DI rt2 = [1 11000]

m 0 • . . ,

0 m I . . .

0 . m 2 . .

0 . . i 0 .

0 . . . i 1

• • • •

o i -

o i - t1

o i-t 2

0 1

0 1

i 2 1

The m i are the discrete lumped masses, and the i i are the moments of inertia of the

masses about their centers of gravity.

Expanding the above, one has:

rlITD I1_ 2=[m 0 m I m 2 0 0 0]

m

t o

I 1

t 2

1

1

1
m
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=m 0A_0 +mlA_l +m2A_2 = 0

Now consider the case ?]i T DI ?]j; where 1 = j

?]iT DI?]i =[¢0 ¢1"" Cn-1 (_0"" Crn-1]

m

m 0
"°

°¶m

m

m0 (¢0)2 (¢n 1 )2 B0(a0)2= + ...+Inn_ 1 _ +

"mn_1

B o

Bn_ 1

u m

¢0

Cn-

GO

I

.Gn-lJ

n-1

i=O

+ ...+ Bn_ 1 (an-l) 2

+ Bi (cri)2) - g[(i); generalized mass.

Equation (B24) can be generalized by expressing it in the form,

?]iT DI?]j =5i j_{i); i= 0,1,2,...,n-1

where

1; i=j5ij is the Kronecker delta, i.e., 5ij = 0; i4j

_(i) isdefined as the "generalized mass" of the ith mode

(B25)

(i = 1,2)
It has been previously stated that ?]0, i was "conveniently" chosen to give

,, .2

The convenience arises if one considers the expression for the generalized

mass of the rigid body modes. Again, using the 3-mass-station example as before:
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T

= T DI = [1 1100

m 0

0

0

0] 0

0

0

0 0 . . 0

m I 0 . . 0

0 m 2 . . 0

0 . i 0 . 0

0 . . i I 0

0 . . . i2

1

1

1

0

0

0

_l_f[L,l,=m0+ ml +m2= Mt total mass of the vehicle for the rigid body

plunging mode

m 0

m I

m2

io

il

i 2

m

AI 0

A( 1

_(2

-1

-1

-1

ITL(2)= Iyy; the moment of inertia of the vehicle about the center of gravity

for the rigid body pitching mode

B.4 EQUATIONS OF MOTION OF FORCED VIBRATION

Equations (B7) and (B8) are rewrittenbelow for convenience:

A T(F- DI _') = 0

z=A z0 +C (F- D I_')

Consider a coordinate transformation given by

z=Hq

(B7)

(B8)

(B26)

95



The transformation matrix, H, can in general be anynonsingular matrix of
order 2n× 2n. However, the orthogonality properties of the eigenvectors canbe used
to great advantageby letting H be the modal matrix of the unrestrained elastic vehicle.
Thus, let

H= [??1 '2 ??3... ??2n] (B27)

The fact that the eigenvectors ?71, ??2 .... , ??2n are mutually orthogonal guar-
antees that H is nonsingular and guarantees the existence of H -1.

where

After transforming coordinates a la (B26), Eqs. (B7) and (B8) become:

A T (F- D IH_) = 0

Hq=A H 0q+C (F- D IH_i)

H0 = [??0, 1, ??0,2 .... , ??0, 2n]

The vectors ??0,1, ??0,2, etc., are

,02=
and from Eq. (B18):

2 1

??0,i =- wi (AT DIA)- A T DI C DI??i; i= 3,4, o..,2n

(B28)

(B29)

(B30)

(B31)

_

Premultiplying (B28) by

(_ ??IT ] -I

(A T )

?72T + _ ??IT)]

one gets, in terms of the rigid body modes,

?72T + _'?71T

(F- D IH'_) =0 (B32)
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Rearranging 0332) and expressing H and ci in terms of their elements gives:

N

_(i)]

_12):
• !

_jl2n)

I;nT + f _1 T I rll _2 ". _2nJ I

(B32a)

Expanding (B32a) :

I nl T Din1 _1 T DI _2 _1 T DI _2n1

Since Hi T D I _j = 6ijrFL(i); (B3 2b) becomes

I ,l,o :I
_(1) _I_(2) 0

_i(I)

"_(2)

ti(2n)

-_(i)-

_(2)

_i(2n)

(B32b)

(B33)

Expanding the first row of (B33) :

Ill.(1) _i (1) = W1r F (B34)

Expanding the second row of (B33) :

_i'_.(1)_(1)_ITL(2)_(2) =-n2 T F (B33a)
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Using Eq. (B34) in (B33a), one obtains:

(2) %](2) = r)2 T F

Eqs. (B34) and (B35) represent the rigid body pitching and plunging modes.

Returning to Eq. (B29),

_i w DIHq=_iTDIA n 0

premultiplication by Hi T D I for i > 2 gives:

q+_Ti T D Ic (F- D IH_)

Using Eq. (B10), rli T D I A = 0, and expanding (B36),

rli T DI[_I ri2.., r_i.., rl2n]

a(1) l

q(2) l

q(i) l

Using the orthogonality property, r)iT D I rlj

_(i) q(i) = _i w DI C (F - D I H }_)

=5

Now referring to Eq. (Bll) which says

_i A_0,i + [w(i)12= C D I _i

transpose both sides:

_i T=_0,i + _i T D IC

rearrange and divide by [w(i)] 2 :

T
= _i DIC(F-D IH'_)

jim(i)

(B35)

(B36)

(B36a)

(B37)

(Bllb)
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t

Substituting (Bllb) into (B37), one gets:

=.

q,i) < iT )
Expanding (B37a) :

_(i) qli)= 1 (WiT F- WiT D I H _i)

[u)(i)] 2

From F_q. (B28), A T (F - D I H }i) = 0, so

_(i) q(i) = 1 (Ti T r -1_i T D I H _i)

[_(i_2

Because of orthogonality, ni T D I H ci = Ti T D I n i }i (i)

(B37c) becomes:

_i)_(_)=_ (__ _)_(_))

where

1 T A T (F - D I H_ )

[oj(i)] 2 n0'i

(i = 3,4,..., 2n)

; a.d TiT DI _(i).Therefore

(B37a)

(B37b)

(B37c)

(B38)

Q(i) = niTF

is the generalized force for the i th mode.

Comparing (B38) to Eqs. (B34) and (B35), it is noted that they are all of the

same form. Therefore, one may write the single equation,

r_(i)_ (i) +F[(i)

where _o(i)= ¢o(2) = O.

the displacements of natural modes of motion.

The solutions to (B39) now constitute the solutions to Eqs. (B5) and (B6).

[co(i)j2 q(i) Q(i) (i 1,2,...,2n) (B39)
It

The q(i) are known as normal coordinates because they express
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B. 5 DISCUSSION OF THE COMPONENTS OF THE F-VECTOR

The components of the F-vector, as was previously mentioned, reflect the

externally applied forces and moments on the vehicle. The number and type of external

forces and moments which may be considered depend upon the type of lumped-mass

model one chooses to represent the elastic vehicle.

Currently there are two different lumped-mass models used. The first model

considers the vehicle as being a single beam and does not include the masses or mo-

ments of inertia of the engines. The second model considers the vehicle as a split

beam with the engines attached (masses and moments of inertia included} to their re-

spective gimbals by torsional springs to simulate the elasticity of the backup structure

and the actuator (engines-in-the-modes}. Both models are applicable to the previous

analytical development. Figure B5 provides a typical illustration of the engines-in-the-

modes model.

Two Booster Engine_

Torsio_

Lateral Springs _ _ - t Barrel

0------0-4

Sustainer Cone/
Torsional Spring

Sustainer Engine _

Figure B5. Typical Spring-Mass Model of the Vehicle

Including Engines-in-the-Mode

The differences between the mode shapes obtained from the two models

previously discussed are:

am

bw

The engines-in-the-modes mode shape will contain deflections and slopes at the

engine center of gravity, whereas the single beam mode shape will not.

The engines-in-the-modes mode shape will contain deflections and slopes at the

booster gimbal point and sustainer gimbaI point, whereas the single beam mode

shape assumes only one gimbal point, which is common for the booster and sus-

tainer engines.

100



References 18 and 19 derive in detail the specific forces and moments which

act onthe vehicle as applied to autopflot stability analysis. Reference 18 pertains to

the engines-in-the-modes model, and Ref. 19 pertains to the single beam model.

To illustrate some typical components of the F vector, consider the example

of Fig. B6.

F
G

A J Tc

F
G

a. Vehicle b. Gimbaled Rocket Engine

Figure B6. Vehicle and Engine Geometry

The external moment at the gimbal, M G, is

ee

MG= IR6

where

IR = moment of inertia of engine with respect to the gimbal

The external force at the gimbal, FG, is

ee

F G=-T c6 -M R(£RS)

where

T c = engine thrust

_R = length from gimbal to engine center of gravity

MR = mass of engine

6 = engine angular displacement
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We may now define:

F--

m

0

0

- (Te 5 + MR _R'_)

0

iR "_

0

gimbal point deflection position

-I---- gimbal point slope position

Now, referring back to Eq. (B39) :

_(i)}_(i)+_(i)[w(i)]2q(i)= Q(i)

one may expand Q(i) in terms of its elements:

(B39)

= F-_O _1 "'" ¢ "°" 0 '_1 .....

0

0

-(Tc6+MR_R'_)

0

0

0

"g)
=- (T 6 + MR _R ¢T' + IR u T (subscript T indicates the gimbal point)
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Therefore, rearranging (B39) and substituting for _i T F,

If one compares Eq. (B40) with the equations derived in Refs. 18 and 19, one

finds that the terms on the right side of the equations are of similar form, i.e., the

product of an external force or moment and a modal deflection or slope. Thus, the

preceding example shows that the product _i T F transforms the externally applied

forces and moments to "generalized forces." Further inspection of (B39) shows that

it is identical to the elastic equations of motion as derived via LaGrange's equations,

the method used in Refs. 18 and 19.

ir

NASA-Langley, 1967 -- 31 CR-834
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